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The effect of adsorption on the measurement of diffusion coefficients by the 
Taylor dispersion technique is investigated by modifying the governing equation 
to account for reversible, nonequilibrium adsorption. The resulting two-dimen- 
sional equations are solved by an explicit finite-difference technique. Experimen- 
tal data for the acridine-carbon dioxide system indicated that acridine adsorbs 
on the walls on the tubing and these data were investigated with this model. The 
influence of various parameters including the number of sites and the rates of 
adsorption/desorption was investigated by conducting a parametric sensitivity 
analysis on the model. It was found that adsorption of the solute on the wall of 
the tubing could produce an error as high as 35% on the measured diffusion 
coefficient compared to the actual diffusion coefficient. Examination of the 
influence of each of the parameters will enable future investigators to reduce the 
effect of adsorption in the measurement of diffusion coefficients by Taylor dis- 
persion. 

KEY WORDS: adsorption; diffusion; supercritical fluid; Taylor dispersion. 

1. I N T R O D U C T I O N  

T h e  k n o w l e d g e  of  d i f fus ion coefficients is necessary  for u n d e r s t a n d i n g  a n y  
process  i n v o l v i n g  so lu te  t r a n s p o r t  a n d  also for ins igh t  in to  p h e n o m e n a  
such  as s o l u t e - s o l v e n t  in te rac t ions .  Hence ,  v a r i o u s  t echn iques  have  b e e n  
used  for the  m e a s u r e m e n t  of  the  di f fus ion coefficients. These  inc lude  N M R  
[ 1 ],  d i a p h r a g m  cell [ 2 ] ,  a n d  G o u y  in ter ference  [ 3 ] .  In  recent  s tudies,  the  
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Taylor dispersion (peak-broadening) technique has been extensively used 
for the measurement of diffusion coefficients [4]. In a typical experiment 
using this technique, a small pulse of the solute is injected into the solvent 
flowing in a circular tube, and the concentration at the end of the tubing 
is obtained. The variance of the concentration profile (response curve) is 
used to obtain diffusion coefficients. Owing to the relative ease of the 
experiments and a strong theoretical basis, this technique has been widely 
used in the measurement of diffusion coefficients of gaseous systems [-5], 
liquid systems [6],  and supercritical fluids [-7, 8]. 

Recently, Levelt Sengers et al. [9] have summerized the literature on 
Taylor dispersion and conducted a thorough investigation of the potential 
sources of error, especially in the measurement of diffusion coefficients of 
solutes in supercritical fluids. Clifford and Coleby [ 10] have also discussed 
the difficulties involved in measuring diffusion coefficients by Taylor disper- 
sion near the gas-liquid critical point. However, they have not addressed 
another source of error, namely, the adsorption of the solute on the walls 
of the tubing. The Taylor dispersion technique assumes that there is no 
adsorption of the solute. However, this assumption is not always valid; cer- 
tain solutes, in both liquid and supercritical systems, have been found to be 
adsorbed on a variety of surfaces like Teflon [11-14], stainless steel 
[7, 15], and deactivated silica [16, 17-1. To account for adsorption, one 
needs to modify the boundary conditions of the Taylor dispersion model. 
Therefore, the first objective of the paper is to quantify the error introduced 
in the diffusion measurements due to the adsorption of the solute on the 
walls of the tubing. Since the adsorption would be controlled by the num- 
ber of adsorption sites available, and the rates of adsorption and desorp- 
tion from the surface of the tubing, these parameters are investigated by 
conducting a parametric sensitivity analysis on the model. 

Another goal of the numerical solution to the Taylor dispersion model 
with the modified boundary conditions is the evalution of the magnitude of 
the adsorption and desorption rate constants. These rate constants are 
usually determined in packed column chromatography by superimposing 
an axial dispersion parameter on a radially uniform velocity [18-21]. 
However, in the case of Taylor dispersion with adsorption in an empty 
column, the rate constants will be evaluted by solving the two-dimensional 
Taylor dispersion model in which the radial velocity profile is exactly main- 
tained. This obviates the need for an effective dispersion parameter. Thus, 
the long-term objective of this study is to expand the utility of the 
chromatographic peak broading method for the simultaneous determina- 
tion of diffusion coefficient as well as adsorption kinetic parameters. This 
could be accomplished with independent measurements of adsorption and 
desorption isotherms from a separate experiment. 
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2. M O D E L  DESCRIPTION 

The Taylor dispersion technique was initially developed by Taylor 
[22, 23] and Aris [24] to study the peak-broadening of a narrow pulse of 
solute, injected at the entrance of a circular tube. This technique was 
refined by many investigators including Alizadeh et al. [4] to determine 
diffusion coefficients of solutes in various fluids. 

The continuity equation in terms of molar concentration for cylindri- 
cal coordinates assuming laminar flow is given by 

[ 02C 10C 02C "] 
D, 2 [ -jr_~ + 7 }-7 + -~-z,- J = - 2 u  1 -  -&z + Ot (1) 

where D 12 is the molecular diffusion coefficient of solute (1) in a solvent (2) 
and is assumed to be a constant with respect to concentration. The initial 
conditions for the above equation (t = 0) are given by 

At z = 0 :  C = C o  (2a) 

For z > 0 :  C = 0  (2b) 

The boundary conditions (t > O; Z > O) are given as follows: 

,3a, 

----0 ,3b, 

Further, for an infinitely long tube, 

For t > 0  and z ~ oo: C =  0 (4) 

This system of equations can be solved analytically [24] in terms of the 
radially average mean concentration C to yield 

- M ( -- (L--  t2t)2'~ 
C--- nRZ(4nKt)l/2 exp \ 4Kt J (5) 

where M is the injection mass, L is the coil length, R is the radius of the 
tubing, and K is the effective Taylor dispersion coefficient [24],  given as 

R2/~ 2 
K = D 1 2 + - -  (6) 

48Di2 
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A key assumption in the model is that the solute does not adsorb on the 
walls of the tubing and is given by the boudary condition, Eq. (3b). Golay 
[ 25 ] has derived equations that describe the solute diffusion when the rate 
of adsorption of the solute on the walls of the tubing is fast (i.e., equiibrium 
adsorption is achieved). In this case the real diffusion coefficient can be 
related to the apparent value 

( 1 + 6k + 1 lk 2) ta -- to 
DI2=DaPP ( l + k )  ' with k = - -  (7) 

to 

where k is the capacity factor, and t~ and t o are the retention times of the 
adsorbed and unadsorbed solute, respectively. However, as pointed out by 
Loh et al. [ 11 ], this equation does not fully account for the solute adsorp- 
tion encountered with their experimental data. Further, one needs to 
develop equations which would be valid for nonequilibrium reversible 
adsorption of the solute on the walls. Equation (3b), the wall boundary 
condition, needs to be modified to include this effect. For this purpose, we 
consider the radial flux of solute at the wall to be 

Nl --D12 [-~-rr ~ = + yl(Nl +N2) (8) 
r ~ R  

where Y l is the solute is the mole fraction in the mobile phase, evaluated 
at the tube wall (r =R).  For small values ofy~, Eq. (3b) becomes 

I OC Nt 
~ r  r=R DIE (9) 

Since the concentration of the solute in the fluid is very low, and the maxi- 
mum coverage cannot exceed monolayer, the Langmuir isotherm was 
chosen for the evaluation of the flux of the solute 

N 1  - -  r ads  - - / ' d e s  

rads = ka C( 1 - ¢ )  

rde  s ---- k d 

0~15 r a d  s - -  r d e  s 

Ot-  S 

(IO) 

where ¢ is the fractional surface coverage and S is the total number of 
active sites per unit surface area. ka and kd are the adsorption and desorp- 
tion rate constants. The equation is rewritten with a dimensionless concen- 
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tration C*, given by normalizing the concentration by the saturation con- 
centration (Co) 

Ot 
i i , - N s [ k ~ q b - k d C  (1-~b)] (11) 

where Ns can be considered as a flux scaled by the surface area and has the 
units of inverse time, k'~ and k'd are dimensionless and are the adsorption 
rate constants scaled to the diffusion rate and are given by 

COD 12. R k d  . Rka 
N s =  R S  ' kh = CoD12, k'a= D12 (12) 

Boddington and Clifford [26] have developed analytical solutions for 
the dispersion of material where adsorption, desorption, and irreversible 
reaction occur. The method of moments was used to obtain solutions, and 
in the case where reaction did not occur, their solutions were equivalent to 
the open-tubular chromatography analysis of Golay [ 25 ]. Under the con- 
ditions investigated by Boddington and Clifford, all predicted response cur- 
ves were Gaussian, and the effect of adsorption and desorption was to 
increase the rate and extent of dispersion of the original pulse input. 
Experimental evidence [ 11-17], as well as our computational results (to be 
presented), shows a distinct non-Gaussian shape is discernible. It may be 
that neglect of certain terms which decay exponentially is the cause of this 
discrepancy. Reconciliation of the analytical solution and the numerical 
solution should be sought. 

3. E X P E R I M E N T  

Alizadeh et al. I-4] have provided a complete review of the theory of 
the Taylor dispersion. They have also provided criteria in terms of mean 
velocity of the solute peak, a, in the dispersion tube under which the 
experiments are to be conducted. Adherence to these criteria ensures that 
the effects of secondary flow are negligible, the flow is laminar, and 
experimental errors due to mechanical features of the injection and detec- 
tion devices are minimized. The experimental data used in this study were 
taken from Smith et al. [27] and Hamilton [ 16]. The maximum standard 
deviation of the experimental data was less than 4%. The experimental 
response curve for phenanthrene was Gaussian and the diffusion coef- 
ficients were directly extracted from the response curve. However, with the 
same experimental apparatus, the response of the acridine-carbon dioxide 
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Fig. 1. Non-Gaussian response curve of the acridine-carbon dioxide 
system. 

system is non-Gaussian due to the adsorption of acridine on the surface of 
deactivated silica, as shown in Fig. 1. The non-Gaussian response of the 
system is due only to adsorption, since all the criteria proposed by 
Alizadeh et al. [ 14] have been met, and the response of phenanthrene-car- 
bon dioxide system under the same experimental conditions and apparatus 
is Gaussian. Hence, the response curve should not be analyzed using the 
usual technique to extract the diffusion coefficients. 

4. NUMERICAL MODELING 

Equation (a) is solved with the above boundary conditions with an 
explicit finite difference scheme. For each approximation, a second-order 
finite-difference approximation was used. Because of the peculiarity of the 
initial condition (pulse input), wherein the concentration is discontinuous 
initially, numerical dispersion occurs, resulting in severe numerical errors. 
The problem of flow with steep density gradients was investigated by Boris 
and Book [28]. They developed an algorithm which treats these steep den- 
sity (or concentration) gradients and minimizes the induced numerical 
error. This algorithm, called the Flux-Corrected Transport (FCT) algo- 
rithm, has been previously used to model the Taylor dispersion by Mayock 
et al. [ 29 ]. He concluded that the algorithm successfully limits the numeri- 
cal error encountered due to the pulse injection. The algorithm consists of 
two parts, the transport stage and the antidiffusion stage. In the transport 
stage, a numerical dispersion term is added to the transport equation. 
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Fig. 2. Plug flow modeling of a pulse (need of FCT). 
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In the anti-diffusion stage, the numerical dispersion term is corrected. 
Figure 2 depicts the need for this algorithm. Consider the hypothetical case 
of injecting a square of solute in a conduit wherein the mobile phase moves 
in a plug flow and there is neither diffusion nor adsorption. The result 
should be the original narrow square pulse, displaced some distance down 
the conduit. If this is modeled using finite differences alone, numerical dis- 
persion occurs creating a dispersed and apparent Gaussian response. When 
the FCT algorithm is employed to this hypothetical case, the true solution 
is obtained. The reason for the effectiveness of the algorithm is that it is 
mass conservative, meaning that any correction applied to a single node is 
counteracted by adding the opposite correction to the appropriate adjacent 
node. An integral part of the FCT algorithm involves finding an estimate 
for the numerical dispersion coefficient. The problem is finding a optimum 
value of the numerical dispersion coefficient such that the numerical error 
is a minimum. In this model, the numerical dispersion coefficient K', was 
calculated using an equation given by Book et al. [30], 

2u(1 - ( r * )  z) dt. K' 3e(1 -e /2)  
e =  dz ' = 4(1+e) z (13) 

4.1. Modeling of the Injection and Detector Output 

In this model, it is assumed that the simulation starts at time O, 
immediately following the injection. Consequently, it is useful to think of 
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the diffusion tube to be divided into M longitudinal or axial elements. 
Initially the concentration in all elements is zero, except for the region con- 
taining the pulse injection, where C* is equal to unity. This is illustrated in 
Fig. 3. The boundary conditions, given by Eqs. (2a) and (2b), will be 
modified as 

- / L  /L 
At t=O, where --~---~<z~<-=-; C* = 1.0 (14a) 

Z Z 

- / L  /L 
At t = 0 ,  where z <  ~ and z>-a-;  C*=0.0  (14b) 

Z 

Next, one needs to deal with the output of data. The numerical model 
gives concentration at each axial and radial element, but in a physical 
experiment one records the radially averaged concentration with respect to 
time. This is done physically by placing a detector at the end of the diffu- 
sion tube and recording the concentation signal as function of time. To 
simulate the physical detector with the model, the concentration is averaged 
at an axial position which corresponds to the end of the tube. For each 
iteration, the average concentration is recorded with the cumulative time. 
This gives a direct simulation to the physical experiment, and hence the 
data from the model can he compared directly to the experiment. 
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4.2. Verification of the Model 

The first test for the numerical scheme was to assume a hypothetical 
case by imposing a velocity profile which is a constant across the radial 
cross section and setting the molecular diffusion terms to zero. As discussed 
earlier, and shown in Fig. 2, the model with the FCT algorithm is able to 
predict the analytical solution to a fair degree of accuracy. 

The next step was to verify the ability of the model to predict a 
Gaussian response by simulating an actual experiment, wherein the solute 
does not adsorb on the tube. For this purpose, the experimental data of dif- 
fusion of phenathrene in supercritical carbon dioxide at 308 K and 27.7 
MPa were used. The parameters R and L were physically measured and are 
0.11 mm and 1.549 m, respectively. The parameters D12 and mean velocity 

were taken from the analytical Taylor solution and were 8.168 and 
0 .00855xm.s  -~, respectively. To simulate the experiment, the above 
parameters were used in the numerical model. The spatial increments were 
fixed as dr=0.0333, dz=0.005163 m, and the time step was fixed to be 
0.00075 s. The injection volume was calculated from the experiment and 
was between 0.1 and 0.5/d. Since the axial spatial increment is known, the 
dimensionless injection length corresponding to an injected volume of 0.2#1 
was 10 elements. Figure 4 shows the model output with the data and the 
Taylor dispersion coefficient. The figure shows that the model is able 
accurately to predict an experimental response and the error between the 
diffusion coefficient calculated from the model response curve and the true 
(input) coefficient is negligible. Hence, one can conclude that the model is 
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accurate and is successful in predicting both the hypothetical case and the 
Taylor dispersion experiment. 

4.3. Numerical Error Analysis 

The final step was to conduct an error analysis to identify the sources 
of numerical error and optimize the spatial and the time increments to 
reduce the computation time. The effect of radial increment was 
investigated by dividing the dimensionless tube radius into 15, 30, and 60 
elements. Increasing the number of radial elements over 30 does not cause 
a significant decrease in numerical error to warrant the increase in com- 
putational time. 

A similar study on the axial elements was performed with the tube 
divided into 1000, 2000, and 3000 axial increments. The injection width was 
fixed at 10 axial elements for 3000 axial increments and was adjusted 
proportionally depending on the number of the axial increments. The 
numerical error is minimized for the case wherein the tube is divided into 
3000 axial points. 

The time increment used in the numerical solution was also studied. 
The model was found to be unstable for time increments above 0.001 s. 
Simulations were run using time increments of 0.00025, 0.0005, and 
0.00075 s and the error from the model was investigated as a function of 
time increment and it was found that decreasing the time increment below 
0.00075 s has no substantial impact on the numerical error. Because the 
model was found to be stable, and was capable of simulating a variety of 
cases successfully, the model was used to simulate various cases of solute 
adsorption. 

5. RESULTS AND DISCUSSION 

The non-Gaussian response of the acridine-carbon dioxide sytem was 
modeled with the modified equations of the Taylor dispersion model 
accounting for adsorption. To model the equations, one requires an 
estimate of the number of sites available on the fused silica and the rates 
of adsorption/desorption. Since the adsorption of acridine on silica may be 
due to the hydroxyl groups present on the surface of deactivated silica, the 
number of hydroxyl sites on fused silica reported by Wright et al. [31]  was 
used as an initial guess of the total number of available sites for adsorption, 
S=3 .49  x 10-Tmol.m -2, which corresponds to Ns of 6000 s -~. With the 
value of Ns at 60,000 s -~ (small value of the number of sites, S), the frac- 
tional coverage at any given time will be complete, say 0.99. This would 
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yield the fraction available for adsorption to be in the order of 0.01, imply- 
ing that the desorption rate constant must be approximately 100 times 
smaller than the adsorption rate constant for the rates to be equal. Using 
these values of rates of adsorption and rates of desorption, the model is 
able to predict the non-Gaussian response well, as shown in Fig. 5. This 
suggests that there are not enough active sites for chromatographic peak 
retention to occur, yet there are enough active sites available to retain part 
of the peak, hence making it tail. 

Two limiting checks on the model can be carried out at this stage, by 
decreasing the number of the sites to zero, and increasing the number of 
sites to infinity. In the limit of zero sites (Ns-~ large--4  x 106),  the peak 
should show no tailing. The model was run under these conditions, and the 
results are shown in Fig. 6. It can seen that the model predicted no tailing, 
as expected. The other limiting case is to allow for unlimited number of 
adsorption sites ( N s - , s m a l l = 0 . 1 )  which whould correspond to the 
simulation of chromatography. There should be no change in the peak 
shape, i.e. the response should be Gaussian, but the peak retention time 
should be greatly increased due to solute retention. The results of this 
simulation are shown in Fig. 7. It can be seen that the peak is still 
Gaussian, however, its retention time has increased from ~ 180 to ~215 
s, as expected. This verifies that the model is capable of predicting various 
hypothetical cases. 

The final step is to use to model to simulate the response curve for 
various values of adsorption sites, and rates of adsorption and desorption. 
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The effect of the number of sites on silica on the response curve of Taylor 
dispersion was studied by varying N, by an order of magnitude, as shown 
in Fig. 8. Both the extent of tailing and the retention time increase with 
decreasing N S. Thus, the shape of the peak is sensitive to the number of 
sites available for adsorption. The effect of the rates of adsorption and 
desorption on the response curves is dependent upon the number of sites 
available for adsorption. For example, at a small value of N,, the effect of 
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the rates on the response curve is significant, as shown in Fig. 9. However, 
as Ns increases, the effect of these rates become less important in influenc- 
ing the shape of the response curve. This can be seen from Figs. 10 and 11. 
At a large value of N s, the influence of the adsorption/desorption nearly 
disappears, as shown in Fig. 11. In each of these cases, the apparent diffu- 
sion coefficients are extracted from these hypothetical cases and compared 
to the actual diffusion coefficient. The results in Figs. 6 and 8-11 are quan- 
tified in Table I, which shows the effect of adsorption parameters, k a, k d, 
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Table I. Effect of Various Parameters on Observed Diffusivities: 
Oactuat = 6.696 x I 0 -9 m 2" s - t 

387 

O b s e r v e d  DI2 % error 
Variable parameter ( x I 0 - 9  m 2 "s  - i ) = ( D actual - D observc~ ) /  D actua| 

Casel: k a=k  d=0.005 

N~ = 600 s - t  4.36 34.88 
N~ = 6000 s - t 6.56 2.03 
N~ = 60,000 s -t  6.69 0.01 

Case 2: N~=600s- t  

k,, = 0.0005, kj = 0.05 6.54 2.32 
k~, = k  d = 0.5 5.33 20.4 
k~ = k a = 0.05 5.23 21.89 
ka = k d = 0.005 4.36 34.88 

Case 3: N~=60000s-I 

k~ = 0.05, kd = 0.0005 6.69 0 
k~ = kd = 0.005 6.69 0.02 
k~ = 0.005, k a = 0.05 6.53 2.39 
k~ = kd = 0.05 6.69 0.02 

Case 4: N~=4x  106S - I  

k,~=5 x 10 -4 , k d =5 x 10 -6 6.53 2.48 
ka =5 x 10 -6, ka=5 x 10 -4 6.69 0.08 

6. S U M M A R Y  

W h e n  care  is t a k e n  to  e l imina t e  e x p e r i m e n t a l  ar t i facts  f r o m  the  T a y l o r  

d i s p e r s i o n  e x p e r i m e n t ,  the  p re sence  o f  a skewed  response  cu rve  is s t r o n g  

e v i d e n c e  o f  d y n a m i c ,  n o n e q u i l i b r i u m  a d s o r p t i o n  b e t w e e n  the  so lu te  and  

the  sur face  o f  the  d i f fus ion tube.  T h e  n u m e r i c a l  m o d e l  desc r ibed  he re in  

s e m i - q u a n t i t a t i v e l y  r e p r o d u c e s  e x p e r i m e n t a l  r e sponse  curves.  T h e  

p a r a m e t e r s  in this  m o d e l  a re  the  c o n c e n t r a t i o n  o f  sur face  sites, the  a d s o r p -  

t i on  a n d  d e s o r p t i o n  k ine t ic  cons tan t s ,  a n d  the  di f fus ion coefficient .  T h e  

p a r a m e t r i c  s tudies  s h o w  tha t  a va r i e ty  o f  k n o w n  c h r o m a t o g r a p h i c  

p h e n o m e n a  can  be  p red ic t ed ,  f r o m  class ical  T a y l o r  d i spe r s ion  to  ideal  o p e n  

t u b u l a r  c h r o m a t o g r a p h y .  At  i n t e r m e d i a t e  va lues  o f  sur face  c o n c e n t r a t i o n  

and  k ine t i c  p a r a m e t e r s ,  w h e r e  the  effects o f  a d s o r p t i o n  p r o d u c e  skewed  

r e sponse  curves ,  the  e r r o r  b e t w e e n  ac tua l  a n d  p red i c t ed  d i f fus ion coeff ic ient  

is as  h igh  as 3 5 %  ( T a b l e  I). 
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Because a wide variety of materials (stainless steel, teflon, fused silica) 
normally used in Taylor dispersion apparatus have shown evidence of 
adsorption, the accuracy of this method may be compromised. Previous 
analyses (e.g., Ref. 4) of the experimental procedure for Taylor dispersion 
have focused on mechanical aspects of the apparatus, while adsorption is 
clearly a chemistry-dependent phenomena. Experimentalists should thus 
consider performing the Taylor dispersion experiment with different 
materials for the diffusion tube, if adsorption effects are anticipated. The 
present study provides some numerical estimates of the potential errors. 
However, precise quantitative corrections for dispersion may require inde- 
pendent measurement of certain of the parameters, e.g., concentration of 
active surface sites. 
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